A) Reminder:

BEDM(S)AS - Brackets, Exponents, Division, Multiplication, Sum (Σ), Addition, Subtraction
B) Central Tendency (Ch. 3)

Population mean: $\mu=\frac{\sum \mathrm{X}}{\mathrm{N}}$ Sample mean: $\mathrm{M}=\frac{\sum \mathrm{X}}{\mathrm{n}}$
C) Sum of Squares (Ch. 4, p. 70-71)

Definitional Formula: $S S=\Sigma(X-\mu)^{2}$
Computational Formula: $\mathrm{SS}=\sum \mathrm{X}^{2}-\frac{\left(\sum \mathrm{X}\right)^{2}}{\mathrm{~N}}$
D) Variance (Ch. 4)
$=\left[\begin{array}{l}\text { Definitional Formula: } \sigma^{2}=\frac{\sum(X-\bar{X})^{2}}{N} \\ \text { Computational Formula: } \sigma^{2}=\frac{\sum x^{2}-\frac{(L X)^{2}}{N}}{\mathrm{~N}} \\ \text { Basic Formula: } \sigma^{2}=\frac{S S}{\mathrm{~N}}\end{array}\right.$
號 $\left[\begin{array}{l}\text { Definitional Formula: } \mathrm{s}^{2}=\frac{\sum(\mathrm{X}-\overline{\mathrm{X}})^{2}}{\mathrm{n}-1} \\ \text { Computational Formula: } \mathrm{s}^{2}=\frac{\sum \mathrm{x}^{2}-\frac{\left(\sum \mathrm{X}\right)^{2}}{n}}{\mathrm{n}-1} \\ \text { Basic Formula: } \mathrm{s}^{2}=\frac{\mathrm{ss}}{\mathrm{n}-1}\end{array}\right.$
E) Standard Deviation (Ch. 4)

F) z-Score (Ch. 5)

For locating an X value's position within a sample:

$$
\mathrm{z}=\frac{\mathrm{X}-\mu}{\sigma} \quad \mathrm{X}=\mathrm{z} \sigma+\mu \quad \sigma=\frac{\mathrm{x}-\mu}{\mathrm{z}}
$$

For locating a sample mean's position within a population:

$$
\mathrm{z}=\frac{\mathrm{M}-\mu}{\sigma_{\mathrm{M}}} \quad \mathrm{M}=\mathrm{z} \sigma_{\mathrm{M}}+\mu \quad \sigma_{\mathrm{M}}=\frac{\sigma}{\sqrt{\mathrm{n}}} \quad \text { OR } \quad \sigma_{\mathrm{M}}=\sqrt{\frac{\sigma^{2}}{\mathrm{n}}}
$$

Finding Degrees of Freedom

Z-Scores Single Sample t-Statistic Paired / Related Sample t-Statistic	$\mathrm{df}=\mathrm{n}-1$
Independent Samples t-Statistic Paired Samples t-Statistics	$\mathrm{df}=\left(\mathrm{n}_{1}-1\right)+\left(\mathrm{n}_{2}-1\right)$
Independent Measures ANOVA:	$\mathrm{df}=\left(\mathrm{df}_{\text {between }}\right),\left(\mathrm{df}_{\text {within }}\right)$ $\mathrm{df}_{\text {between }}=\mathrm{k}-1$ $\mathrm{df}_{\text {within }}=\mathrm{N}-\mathrm{k}$
Repeated Measures ANOVA:	$\mathrm{df}=\left(\mathrm{df}_{\text {between }}\right),\left(\mathrm{df}_{\text {error }}\right)$ $\mathrm{df}_{\text {between }}=\mathrm{k}-1$ $\mathrm{df}_{\text {error }}=(\mathrm{N}-\mathrm{K})-(\mathrm{n}-1)$
	If single row of data: $\mathrm{df}=\mathrm{C}-1$ If table of data: $\mathrm{df}=(\mathrm{R}-1)(\mathrm{C}-1)$
Chi-Square:	

©2019 Tyndale University College and Seminary. All rights reserved. Tip Sheets are for personal use only. Any unauthorized reproduction or distribution is prohibited.
G) Single Sample t-Statistic (Ch. 7)
$t=\frac{M-\mu}{s_{M}} \quad s_{M}=\frac{s}{\sqrt{n}} \quad$ OR $\quad s_{M}=\sqrt{\frac{s^{2}}{n}}$
H) Independent Measures \& Two Samples t-Statistic (Ch. 8)
$\mathrm{t}=\frac{\left(\mathrm{M}_{1}-\mathrm{M}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\mathrm{S}_{\mathrm{M}_{1}-\mathrm{M}_{2}}}$
If sample sizes are the same: $s_{M_{1}-M_{2}}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}{ }^{2}}{n_{2}}}$
If the sample sizes are different: $\quad S_{M_{1}-M_{2}}=\sqrt{\frac{s_{p}{ }^{2}}{n_{1}}+\frac{s_{p}{ }^{2}}{n_{2}}}$
Pooled Variance: $s_{p}{ }^{2}=\frac{\mathrm{SS}_{1}+\mathrm{SS}_{2}}{\mathrm{df}_{1}+\mathrm{df}_{2}}$
K) Pearson Correlation (Ch. 11)

$$
\begin{aligned}
& r=\frac{S P}{\sqrt{\left(S S_{x}\right)\left(S S_{y}\right)}} \\
& S P=\Sigma X Y-\frac{(\Sigma X)(\Sigma Y)}{n} \\
& S S_{x}=\Sigma X^{2}-\frac{(\Sigma X)^{2}}{n} \\
& S S_{y}=\Sigma Y^{2}-\frac{(\Sigma Y)^{2}}{n}
\end{aligned}
$$

L) Chi-Square Statistic (Ch. 12)

$$
\chi^{2}=\Sigma \frac{\left(\mathrm{f}_{\mathrm{o}}-\mathrm{f}_{\mathrm{e}}\right)^{2}}{\mathrm{f}_{\mathrm{e}}}
$$

©2019 Tyndale University College and Seminary. All rights reserved. Tip Sheets are for personal use only. Any unauthorized reproduction or distribution is prohibited.

